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Self-induced flow in a rotating tube 

By S. GILHAM,? P. C. IVEYJ J. M. OWEN7 AND 
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(Received 30 August 1990) 

When a tube, sealed at  one end and open to a quiescent environment at  the other, 
is rotated about its axis, fluid flows from the open end along the axis towards the 
sealed end and returns in an annular boundary layer on the cylindrical wall. This 
paper describes the first known study to be made of this self-induced flow. Numerical 
solutions of the Navier-Stokes equations are shown to be in mainly good agreement 
with experimental results obtained using flow visualization and laser-Doppler 
anemometry in a rotating glass tube. 

The self-induced flow in the tube can be described in terms of the length-to-radius 
ratio, G, and the Ekman number, E.  However, for large values of G (G 2 20), the flow 
outside the boundary layer on the endwall of the tube can be characterized by a 
single, modified, Ekman number, E*, where E* = CE. Although most of the fluid 
entering the open end of the tube is entrained into the annular (Stewartson-type) 
boundary layer, for small values of E* (E* < 0.2) some flow reaches the sealed end. 
For this so-called ‘short-tube case’, the flow in the boundary layer on the endwall is 
shown to be similar to that associated with a disk rotating in a quiescent 
environment : the free disk. The self-induced flow for the short-tube case is believed 
to be responsible for the ‘ hot-poker effect ’ used, on some jet engines, to provide ice 
protection for the nose bullet. 

1. Introduction 
Ice formation in the air intake of a jet engine can present a major hazard: large 

pieces of ice centrifuged from the central portion of the rotating nose cone (or nose 
bullet) at  the front of the engine can be ingested by the compressor, damaging its 
blades. Ice-protection systems are used to solve this problem, and in one system, 
used by Rolls Royce, hot air is passed through the hollow compressor shaft of the 
engine to an anti-icing tube attached to the nose bullet. After impinging on the inner 
surface of the bullet, the hot air is exhausted through vents (as shown in figure l),  
and is liable to be ingested by the compressor. This ingestion can cause a loss of 
performance and a reduction in the operating surge-margin of the compressor. 

Rolls-Royce engineers conducted tests on an anti-icing system in which the vents 
were sealed to prevent hot-air ingestion into the compressor. They found, somewhat 
surprisingly, that heat transfer still occurred at the nose bullet even though there was 
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FIQURE 1 .  Schematic diagram of a jet engine showing the anti-icing system for the nose bullet. 

FIGURE 2. Self-induced flow in a rotating tube, 

no longer a superposed flow of hot air through the anti-icing tube. This unexpected 
behaviour was referred to by the engineers as the ‘hot-poker effect ’. 

A pilot study was subsequently conducted by Owen & Pincornbe (1981) a t  the 
University of Sussex. They carried out flow visualization for a circular glass tube, 
with a length-to-diameter ratio of around 27, rotating at speeds up to 2000 rev/min. 
about its axis. One end of the tube was open to the atmosphere and the other end was 
sealed, to simulate the nose bullet. A laser was used to create slit illumination and 
smoke, made from micron-size oil particles, was introduced near the open end. The 
smoke was seen to travel along the axis from the open to the sealed end and to return 
in an annular layer on the inner wall of the tube. This phenomenon, which was 
observed under isothermal conditions, was termed ‘ self-induced flow in a rotating 
tube ’. 

Figure 2 shows a simplified diagram of the observed flow. At  high rotational 
speeds, the flow was seen to penetrate the entire length of the tube: this was called 
the ‘short-tube case’. At low speeds, the recirculating flow was confined to a region 
near the open end : the ‘ long-tube case ’. The strength of the flow was found to depend 
on both the rotational speed and the length-to-radius ratio of the tube. 

The phenomenon of self-induced flow can be readily understood by first considering 
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a rotating tube sealed at both ends and surrounded by a uniform-pressure 
environment. The fluid inside the sealed tube is in solid-body rotation, and the radial 
pressure gradient is balanced by the centripetal acceleration : the pressure is highest 
at the outer radius of the tube and lowest at the centre, and the resulting axial 
pressure forces at both ends are reacted by the walls. However, if one endwall is 
removed, the radial distribution of pressure cannot be balanced at the open end: 
high-pressure fluid near the outer radius of the tube will flow axially outwards to be 
replaced by external fluid moving inwards along the axis. 

Although, as far as the authors are aware, there have been no publications in the 
scientific literature about self-induced flow in a rotating tube, work has been 
conducted on related problems. Stewartson (1957) considered the flow inside a 
cylinder, of length 1 and radius a, rotating about its polar axis with angular speed Q. 
The cylinder was sealed a t  each end by discs which rotated at an angular speed 
Q(l-e) ,  where I E J  < 1. For E 4 1, where E = v/Qa2 and v is the kinematic viscosity 
of the fluid, Stewartson obtained solutions of the linearized equations of motion (in 
which the nonlinear inertia terms in the Navier-Stokes equations were neglected) 
and showed that the flow comprises an inviscid core of rotating fluid surrounded by 
boundary layers on the solid surfaces. Ekman layers (Ekman 1905) with a thickness 
of order Ei form on the disks, and shear layers (now referred to as Stewartson layers) 
form on the cylindrical surface. The Stewartson layers comprise two regions : a layer 
of thickness of order @ in which axial flow occurs, and a layer of thickness of order 
& in which the angular speed of the core adjusts to that of the cylindrical wall. 

Brouwers (1976) considered the case where the disks a t  each end of the cylinder 
were porous, and flow was generated by the transfer of fluid through, and/or by the 
differential rotation of, the disks. He delineated three regimes of flow. In regime (i), 
for & < G 4 E-4, where G = l /a ,  there is an inviscid core surrounded by Ekman 
layers and Stewartson layers : the Taylor-Proudman theorem applies in the core 
where the radial component of velocity is zero, and the axial and tangential 
components are invariant with the axial distance z. In  regime (ii), for E-4 < G 4 E-l ,  
the tangential component of velocity is sheared from the axis to the cylindrical wall 
and, although there is still an Ei layer on this wall and Ekman layers on the disks, 
the axial component of velocity varies linearly with z. In regime (iii), for E-' 6 G,  
viscous effects extend throughout the cylinder, and the flow tends to be restricted to 
regions near the disks. Although the Brouwers analysis is not of direct relevance to 
the present problem, there are certain similarities : regimes (i) and (ii) correspond, to 
some extent, to the short-tube case, and regime (iii) to the long-tube case. 

Gilham (1990) extended the linear analysis of Brouwers to the case of a rotating 
tube, with one end open and the other end sealed, in which the fluid at the open end 
is in near solid-body rotation. For small values of the Rossby number and large 
values of G ,  the flow can be characterized by a single, modified, Ekman number E*, 
where E* = GE. For E* > 0.2, recirculation is confined to the open end and the axial 
component of velocity decays exponentially along the tube ; this corresponds to the 
long-tube case. For E* < 0.2 recirculation occurs throughout the tube and an Ekman 
layer is formed on the endwall; this corresponds to the short-tube case. For very 
small values of E* (E* < 0.0025), the flow is similar to that in Brouwer's regime (i) : 
there is an inviscid core with a Stewartson layer on the cylindrical wall and an 
Ekman layer on the endwall. 

The present paper describes a combined numerical and experimental study of self- 
induced flow in a rotating tube. The numerical method used to solve the 
Navier-Stokes equations is outlined in $2, and the experimental apparatus used to 
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make optical measurements of the velocity and to  provide visualization of the flow 
is described in 53. Comparisons between the computed and experimental results for 
the flow structure and velocity distribution inside the tube are made in 5§4 and 5. 

2. Numerical method 
2.1. Equations of motion 

For steady, incompressible, rotationally symmetric, laminar flow, with density p and 
dynamic viscosity p, the Navier-Stokes and continuity equations can be written (see 
Schlichting 1979) as 

(2.3) 

where u, v, w are the radial, tangential and axial components of velocity in a 
stationary, cylindrical-polar coordinate system ( r ,  q5, z )  and p is the static pressure. 
As shown in figure 3, the tube, which is open at  one end and sealed a t  the other, is 
of length 1, radius a and rotates with angular speed SZ about its axis; attached to  the 
open end of the tube is an annular disk of outer radius b and inner radius a. The 
reasons for including the disk are discussed in 52.1.1 below. 

2.2. Boundary conditions 

2.1.1. The open end 
I n  the experiments of Ivey (1988), there was a stationary enclosure around the 

open end of the rotating tube, as described in $3. Gilham (1990) carried out some 
computations using boundary conditions corresponding to  a sealed stationary 
enclosure, but he found that the problem of computing the flow inside the enclosure 
could be as difficult as that of computing the flow in the tube itself. The strength of 
the computed recirculation in the enclosure increased with increasing rotational 
speed, and the length of the enclosure had to  be made impractically large if it were 
not to affect the flow in the tube. 

In  a gas-turbine engine, there is an annular rotating disk near the open end of the 
tube, as shown in figure 1.  Ivey measured the axial component of velocity near the 
sealed end of the rotating tube with and without a disk a t  the open end, and he found 
that the disk had only a small effect on the flow. For the computations, it is difficult 
to specify the boundary conditions in the plane of the open end ( z  = 0, r < a )  as the 
flow is recirculating here, but if an annular rotating disk is assumed to be attached 
to the open end, the problem of specifying the boundary conditions can be simplified. 
Referring to figure 3, the flow is assumed to enter the system axially through 
boundary (i), and the flow out of the tube is entrained into the boundary layer on the 
rotating disk and leaves the system radially through boundary (vi). 
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FIGURE 3. Domain of integration for the rotating tube and disk: (i)-(vi) refers to the 
boundaries. 

Conditions near the rotating disk can be specified with some confidence if von 
Karman’s (1921) equations for the free disk are assumed to apply. The Navier-Stokes 
equations for an infinite disk rotating in a quiescent fluid are satisfied by similarity 
solutions of the form : 

Here z‘ = - z  is the axial distance from the disk, v is the kinematic viscosity, and 
F([), G ( g ) ,  H ( c )  are functions that satisfy the boundary conditions : 

F(0)  = 0, G ( 0 )  = 1, H ( 0 )  = 0 , l  
F ( g ) + o ,  G(g)+O as 5-m.) 

Cochran (1934) obtained the first numerical solutions of the von Karman equations 
and, in particular, found that H(g)+0.886 as [+ co. Recently, Rogers (see Owen & 
Rogers 1989) obtained more accurate solutions which agree with Cochran’s values 
except for the limiting value of H ( c ) ,  which was found to be 0.8845; the solutions of 
Rogers are identical to those of Benton (1966). 

It is convenient to  define the edge of the boundary layer on the free disk as the 
point where v/Qr = 0.01 ; using this definition, the boundary-layer thickness, 6, is 
given by 

6 x 5.5(;). f 

For the computations described below, it is assumed that the free-disk boundary 
conditions are appropriate for a finite annular disk rotating in a quiescent fluid of 
finite extent. Boundary (i), shown in figure 3, is assumed to be far enough away from 
the disk for the conditions at infinity to apply, such that, at  z = -s, 

u = o ,  v = o ,  p = p , ,  (2.8) 

where pa is the constant atmospheric pressure. For boundary (vi), it is assumed that 
17-2 
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the radius b of the disk is large enough for the similarity conditions given in (2.5) to  
apply, such that, at r = b,  

= 0. a u  a v  aw aP 
- ar -(-)=o, ar r -(-)=o, ar r - ar = 0, 

These two conditions ensure that, as for the free disk, fluid enters the system axially 
through boundary (i) and leaves radially through boundary (vi). 

For the computations described below, the radius of the disk was set arbitrarily as 
b = 5a. For most cases, the axial limit of the integration domain was set as s = a :  this 
ensured that 8 4 s. In  some cases, s was increased on an ad hoc basis to ensure that 
the flow inside the tube was not affected significantly by the boundary conditions a t  
the open end. (For the case of a solid disk, Gilham 1990 found that a value of s = 
48 was sufficient to ensure that the computed velocity profiles were in good 
agreement with the free-disk results of Rogers.) 

2.2.2. Conditions for the six boundaries 
As stated above, the conditions for boundaries (i) and (vi) shown in figure 3 were 

based on the free-disk boundary conditions. Symmetry conditions were used for 
boundary (iv), and no-slip conditions were used for the other boundaries. For 
completeness, all six boundary conditions are written below. 

I (i) z =  -s, O < r < b :  u=O,  v = 0, P = P a ;  
(ii) z = O ,  a < r < b :  u = 0 ,  v = Qr, w = 0;  

(iii) z = 1, 0 < r < a: u = 0, v=Qr,  w = o ;  

aw 
= 0; - (iv) r = O ,  - s < z < l :  u=O, v = 0, 

ar (2.10) I 
I (v) r = a ,  O < z < l :  u=O, v = Qa, w = 0;  

- s < z < o :  -(-)=o, a u  -(-)=o, a v  aw - 
ar r ar r ar 

(vi) r = b,  

2.3. Numerical solution 
Numerical integration of the governing equations (2.1)-(2.4) with boundary 
conditions (2.10) was achieved with a finite-difference algorithm incorporating a 
multigrid acceleration technique (see Vaughan, Gilham & Chew 1989). Finite- 
difference replacements were made for the governing equations using a non-uniform 
rectangular staggered grid covering the integration domain, and the resulting 
difference equations were solved using a V-cycle nonlinear multigrid method 
incorporating the SIMPLEC pressure-correction scheme of van Doormaal & Raithby 
(1984). Further details are given below, and the interested reader is referred to 
Gilham (1990). 

2.3.1. Finite-difference equations 
The finite-difference equations were obtained by integration of the momentum 

equations, in the manner detailed by Patankar (1980), over the control volumes 
formed by a rectangular non-uniform staggered grid covering the domain. The grid 
was of the form recommended by Patankar & Spalding (1972) in which the control 
volumes for the radial and axial components of velocity (the u-cell and w-cell 
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FIGURE 4. Finite-difference grid used in the computation. 

respectively) are shifted or staggered such that they lie midway between the control 
volumes at which the tangential component of velocity and pressure are calculated 
(the @-cell). The grids were generated by expanding and contracting the spacing of 
the @-cell nodes in accordance with a geometric progression. Typically, 65 radial and 
128 axial nodes were used within the tube, and 97 radial and 65 axial nodes in the 
region surrounding the open end. A simplified example of the finite-difference grid is 
shown in figure 4. 

The momentum equations can be expressed in the common form 

a a@ 
: i r (  !) a,( a,) 

i a  a 
r ar aZ --(pru@)+-(pw@) =-- p r -  +- p- +S,, (2.11) 

where @ represents the generalized variable (u, v, w )  and S,  is a source term. 
Integration of (2.11) over the control volumes (see Patankar 1980) leads to the finite- 
difference equation : 

(2.12) 

Here Cnb represents the summation of the coefficients over the four neighbouring 
nodes, Qnb the values of @ at these nodes, Sl,, and S2*, are the coefficients of the 
linearized source term, and A*,, and Anb,, are coefficients resulting from the control- 
volume integration. Further details are given by Gilham (1990). 

The continuity equation was used to devise a pressure-correction equation in the 
manner described by van Doormaal & Raithby (1984). This equation, which had the 
dual role of determining the pressure and ensuring that the velocity field satisfied 
continuity, has the same form as (2.12). 

Boundary conditions were introduced via the boundary nodes, and for Neumann 
conditions a second-order central or backward difference was used to set the 
boundary value. When the pressure was specified, the pressure correction was set to 
zero, implying continuity in the boundary cells. Thus, only one of the axial and radial 
velocities was prescribed, and the other was found by rewriting the continuity 
equation as a flux condition. Starting values were obtained by setting all variables 
to zero. 

2.3.2. Multigrid algorithm 
The coupled system of nonlinear equations given in $2.3.1 was solved using a V- 

cycle nonlinear multigrid algorithm, as described by Vaughan et al. (1989). In  
multigrid methods, which employ a series of progressively coarser grids, the finite- 
difference equations are ‘relaxed’ (i.e. partially solved) on a fine grid, initially the 
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finest grid. Following relaxation, the residuals of the equations are evaluated, and 
both the residuals and the current solution are 'restricted' (i.e. transferred) to a 
coarser grid using a restriction operator. 

The processes of relaxation and restriction are repeated until the coarsest grid is 
reached, after which a process of relaxation followed by 'prolongation' (i.e. 
interpolation) is undertaken in which the coarse-grid equations are relaxed and 
corrections for the finer grid evaluated. These corrections are then prolongated to the 
finer grid and the solution updated. These processes of relaxation and prolongation 
are repeated until the finest grid is reached, where the updated solution forms an 
improved fine-grid solution. The above cycle from fine to coarse to fine grid 
(commonly referred to as a V-cycle) is repeated until convergence is achieved. 

The relaxation process used here was the SIMPLEC pressure-correction scheme of 
van Doormaal & Raithby. The finite-difference momentum equations were solved 
using one alternating-line Gauss-Seidel relaxation sweep, and the pressure-correction 
equation was solved using six sweeps. Following relaxation, the velocities and 
pressure were corrected. On the finest and intermediate grid levels, the process of 
smoothing and correction was repeated once, and on the coarsest grid twice, to 
ensure a sufficiently smooth solution. 

Under-relaxation was required owing to the nonlinearity of the equations. It was 
implemented implicitly, via the coefficients, for the momentum equations, and 
explicitly for the pressure. The under-relaxation factors for the momentum equation 
were typically 0.3, and for the pressure 0.5, although these values were changed for 
different Ekman numbers. The strong coupling between the radial and tangential 
momentum equations, and the dominance of the centripetal-acceleration term 
(pvU2/r) within the radial momentum equation necessitated additional under- 
relaxation. This was achieved by using the distributive damping terms suggested by 
Gosman et al. (1976) : aG pI t~ l / r (u" -~ -u"), where the superscripts n- 1 and n refer to 
successive iterations, was added to the source term of the radial momentum 
equation ; a value of aG % 50 was found to be satisfactory. 

The coarse grids were generated by omitting alternate @-cell nodes in both 
directions, with the u-cells and w-cells being staggered halfway between. A nine- 
point grid-weighted restriction operator for the @-cells, and a six-point operator for 
the u-cells and w-cells were used to transfer the variables and residuals from the fine 
to the coarse grids. For most of the results presented below, three grid levels were 
used, and prolongation of the correction from the coarse to fine grids was made using 
bilinear interpolation. 

The root-mean-square residual, RMS,, was defined as 

RMS, = [&(@"-@"-')'//Cij ( @ " ) ' ] I t ,  

where @" and Gn-l represent the current and previous iterative values, respectively, 
and Zi, indicates summation over all grid nodes. Convergence was said to have 
occurred when RMS, dropped below a specified value (typically Additional 
checks, involving overall balances in conserved quantities such as mass and 
momentum, were also used to ensure convergence. 

The numerical method was validated by comparing the computed velocities with 
available 'exact solutions', such as Rogers' results for the free disk (see Owen & 
Rogers 1989), and with experimental data for related problems, like vortex 
breakdown in a sealed rotor-stator system (see Escudier 1984). Details of these 
validation tests, for which good results were achieved, are given by Gilham (1990). 
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For the rotating-tube problem considered here, computations were conducted for 
5 < G < 40 and 5 x < E < 0.04. The number of finite-difference nodes used, and 
the computational time taken, depended on the values of G and E .  For example, for 
G = 10 and E = 0.002, with 128 axial and 65 radial nodes in the tube, and 65 axial 
and 97 radial nodes in the open-end region near the disk, the multigrid method 
required 89 iterations to obtain a converged solution (RMS, < for all variables) ; 
on a VAX 8530 computer, this took 672 minutes of CPU time. Whilst this represents 
a considerable amount of computing time, the equivalent single-grid solution 
required 4615 iterations and took 3578 minutes of CPU time! 

3. Experimental apparatus 
Figure 5 shows the rotating-tube rig used for the optical measurements. A 

horizontal glass tube, with one end partially enclosed by a stationary casing that was 
open to the atmosphere and the other end sealed by a Perspex disk, was supported 
on ball-bearing assemblies, which themselves were attached to a baseplate. The tube 
was rotated at speeds up to 6000 rev/min. by an electric motor and belt-drive, and 
the rotational speed was measured to an accuracy of 1 %  by an electronic 
tachometer. 

Velocity measurements inside the tube were obtained by 1aaePDoppler anemo- 
metry (LDA) operating in the forward-scatter real-fringe mode, and micron-size 
silicone oil particles were used to 'seed' the air outside the stationary enclosure a t  the 
open end of the tube. A 15 mW Spectra-Physics He-Ne laser was used as the light 
source, and a Malvern Instruments beam-splitter and frequency-shift unit were 
employed in the transmitting optics. The beam separation at transmission was 
20 mm and the focal length of the transmitting lens was 150 mm, which resulted in 
a probe volume approximately 110 pm diameter and 1.7 mm length with a fringe 
spacing of 4.75 pm. The receiving optics included an F1.8 lens of 50 mm focal length, 
a 50 pm pinhole and an EM1 photomultiplier, and the resulting signal (with Doppler 
frequencies mainly in the range 3Ck100 kHz) was processed by a Cambridge 
Consultants tracking filter used in the frequency counting mode. In  this mode of 
operation the instrument was accurate to T 0.1 %. 

Uncertainty in the measured velocity was caused by radial and angular 
misalignment of the probe volume, refraction in the glass tube, velocity biasing due 
to the size of the probe volume, and round-off errors in the measured frequencies. Of 
these, the uncertainty caused by angular misalignment was considered to be the 
largest. For example, when measuring the axial component of velocity near the outer 
radius of the tube (where the axial component is much smaller than the tangential 
one), a small angular misalignment can cause a small fraction of the large tangential 
component of velocity to be added to the signal. As shown by Ivey (1988), an angular 
misalignment of only 0.25" was found to give large errors in w near the outer part of 
the tube. Measurements of the tangential component of velocity were validated by 
sealing the tube to ensure solid-body rotation; no such validation of the axial 
component was possible. However, despite all the problems, most of the results 
presented below were in good agreement with the computed velocities. 

For flow visualization, a 4W Spectra Physics argon-ion laser, a cylindrical lens and 
a bi-convex lens were used to produce a collimated sheet of light which entered the 
tube at the open end. The light sheet was parallel to, and coincident with, the axis 
of the tube and, to reduce flare, the width of the light sheet was slightly less than the 
diameter of the tube. A Concept smoke generator, which could be pulsed, released 
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- 
FIQKJRE 5. Rotating-tube rig used for the optical measurements. (Stationary enclosure is at left- 
hand end of glass tube. Laser transmitting optics are to left of tube; receiving optics to right.) 

clouds of micron-sized oil particles into the air surrounding the open end of the tube. 
Photographs were obtained with a Canon A1 camera, operating in the 'aperture- 
preferred mode' a t  F1.4, using IS0 400 black and white film. 

Further details of the rig and instrumentation are given by Ivey (1988). 

4. Flow structure 

4.1. Flow visualization 

Figures 6 and 7 show photographs taken near the open end and the sealed end, 
respectively, of the rotating tube. The length and radius of the tube were 1 = 
1050 mm and a = 36.5 mm (G = 28.8), and the rotational speed was 175 rev/min. 
( E  = 6.25 x A pulse of smoke was released into the enclosure at  the open end, an 
( r ,  z )  plane was illuminated by the argon-ion laser, and photographs were taken at 
five frames per second. The datum t = 0 refers to the time, after smoke had entered 
the tube, when the first photograph was taken, and subsequent times refer to this 
datum. 

In figure 6 ,  the open end is at the left and the start of a bearing assembly, a t  
z / l=O.38 ,  can be seen at the right. The smoke, which appears white in the 
photographs, moves progressively along the centre Qf the tube and reaches the 
bearing at  t % 1 s. For t 2 1.2 s, the boundary between the central core of smoke, 
flowing towards the sealed end, and the clear returning air (which appears black) can 
be readily seen. 

In  figure 7, the smoke front has moved past the second bearing assembly, which 
ends at  z / l  = 0.62, and reaches the sealed end a t  t % 3.6 s. For t 2 4.2 s, the smoke 
flows radially outward in the boundary layer on the disk at  the sealed end, and 
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FIGURE 6. Flow visualization near the open end of the tube. G = 28.8, E = 6.25 x lo-'. 

returns towards the open end in an annular boundary layer on the cylindrical wall 
of the tube. Flare from the solid surfaces, particularly from the disk, makes flow 
visualization difficult near the sealed end, and careful inspection of the photographs 
is necessary. 
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FIGURE 7. Flow visualization near the sealed end of the tube. G = 28.8. E = 6.25 x 

In some of the earlier tests of Owen & Pincombe (1981), self-induced flow was 
observed in a rotating tube with no endwalls. In principle, with identical conditions 
at each end of the tube, the flow should be symmetrical about the mid-axial plane, 
z / l =  0.5. In practice, the flow is unstable to small disturbances, and there is a 
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(b)  E* = 0.0266 
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(c) E* = 0.0027 ( d )  E* = 0.0002 
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Z l l  z l l  
FIGURE 8. Computed streamlines for a x 40. The arrows show the boundary between axial 

inflow and outflow. 

‘ preferred ’ direction. However, the fact that self-induced flow still occurs inside a 
tube with no endwall serves to illustrate the point, which is reinforced by the results 
presented below, that the flow in a long rotating tube is generated principally by the 
cylindrical wall of the tube. 

4.2. Computed streamlines 
The stream function, Y,  where 

was obtained by integrating the computed velocity distributions. It is useful to 
present the computed velocities and ‘streamlines’ (or plots of constant Y) in terms 
of a modified Ekman number, E*, where 

As stated in $1, Gilham (1990) obtained solutions of the linear equations and showed 
that for G % 1 the flow could be uniquely characterized by E * :  it is unnecessary to 
specify G and E separately. In $5, it is demonstrated that E* can also be used to 
characterize the flow even when the NavierStokes equations, rather than the linear 
equations, are solved. 

Figure 8 shows the computed streamlines for G x 40. (The discontinuities in the 
streamlines shown in the figures at z / l  = 1 are caused by the fact that, for the scale 
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used, the thickness of the Ekman layer is negligible.) In figure 8 ( a ) ,  for E* = 0.2, 
which corresponds to the long-tube case, circulation is restricted to a region near the 
open end at z / l  = 0. For E* < 0.2, which corresponds to the short-tube case, figures 
8(b-d) shows that progressively more flow reaches the sealed end ( x l l  = 1) as E* is 
reduced. In figure 8 ( d )  there are indications of boundary layers on the cylindrical 
wall, at  r / a  = 1, and on the disk at  the sealed end. It can also be seen that only a 
fraction of the fluid entering the tube reaches the sealed end: most is recirculated 
from the core into the annular boundary layer on the cylindrical wall. (This 
recirculation is not readily apparent in figures 6 and 7,  which were photographed at 
E* = 0.018, as most of the fluid in the boundary layers on the cylindrical wall was 
entrained from regions into which the smoke had not been convected.) 

5. Velocity distributions 
5.1. Axial variations of velocity along the tube 

Figure 9 shows the effect of G on the computed axial variation of w/Qa along the axis 
of the tube. Figure 9(a), for E* = 0.2, corresponds to the long-tube case in which, 
away from the open end, the velocity decays rapidly with axial distance. Figure 9 ( b ) ,  
for E* = 0.002, corresponds to the short-tube case in which, away from the boundary 
layer on the endwall, the decay of velocity is more gradual. In both cases, for G >, 
20 the effect of G is relatively weak and the velocity distribution depends mainly on 
E* ; this is consistent with Gilham's (1990) solution of the linear equations, referred 
to in $ 1 ,  in which for G 9 1 the flow depends solely on E*.  For comparison with 
experimental data, the results presented below were all obtained for G = 42.6. 

The effects of E* on the axial variation of the axial and tangential components of 
velocity are shown in figure 10. Figure 10(a) provides a comparison between the 
computed values of w/Qa,  on the tube axis, and the velocities measured for E* = 
0.0266 and 0.0027 by the LDA system described in $3. It should be remembered that 
the experiments were conducted using a stationary enclosure at the open end 
whereas the numerical model used a rotating disk. However, away from the open 
end, agreement between the computed and measured velocities is very good, and 
both sets of results converge near the boundary layer on the endwall. (As stated in 
$2.2.1, the measurements of Ivey (1988) suggested that a rotating disk has only a 
small effect on the flow near the sealed end.) 

It can be seen from figure 10(a) that for E* 6 0.0266, where short-tube conditions 
prevail, w/Qa decreases as E* decreases; however, as E* K (Qa)-', w itself increases 
as E* decreases. It can also be seen that the axial decay of w/Qa  is attenuated as E* 
decreases. 

Additional insight can be gained by considering the axial variation of the 
tangential components of velocity shown in figure 10(b) .  The distributions of v/Qr,  
which were computed at r / a  = 0.017, show a monotonic decrease of the magnitude 
of v/Qr with decreasing E*. For E* = 0.2, the fluid is virtually in solid-body rotation 
(v /Qr = 1) for z / l  > 0.6; for E* = 0.0002, there is very little rotation of the fluid in 
the core outside the boundary layer on the endwall. 

5.2. Radial variation of velocity near the open and sealed ends 
Figure 11 shows the effect of E* on the radial variation of wlS2a. In figure 11 (a ) ,  near 
the open end at z / l  = 0.129, there is mainly good agreement between the computed 
and measured velocities for E* = 0.0266 and 0.0027. It can be seen that, as shown in 
$4, there is a central core of fluid moving towards the sealed end ( w  > 0 ) ,  with fluid 
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returning in an annular boundary layer (w < 0). For short-tube conditions (E* < 
0.2), the magnitude of w/Qa (but not necessarily the magnitude of w) and the 
thickness of the annular layer decreases as E* decreases; in the central core, the 
velocity distribution becomes flatter as E* decreases. 
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In figure 11 ( b ) ,  near the sealed end at  z / l  = 0.984, the agreement between the 
measured and computed velocities for E* = 0.0266 and 0.0027 is not as good as at the 
open end. However, it  should be noted that the scale for w/Qa in figure 11 ( b )  is an 
order of magnitude different from that in figure 11 (a) .  It should also be pointed out 
that the positional uncertainty in the axial location of the probe volume was 
T 0.25 mm : referring to figure 9 ( b ) ,  it can be seen that a small variation in z / l  can cause 
a large variation in w/Qa at z / l  = 0.984. Despite these difficulties, both measured 
and computed velocities show similar trends: the inflexion at  r/a M 0.6 for E* = 
0.0027 is caused by the boundary layer on the endwall, which is discussed in 95.3. 
(The region near r /a  = 1 where w > 0 for E* = 0.0002 is a small recirculation zone 
formed by the radially outward flow in the boundary layer on the disk meeting the 
axial flow in the boundary layer on the cylindrical wall.) By comparing figure 11 ( b )  
with 11 (a ) ,  it can be seen that, for E* = 0.0266 and 0.0027, the thickness of the 
annular boundary layer increases with increasing 2 1 1 ;  for E* = 0.0002, the thickness 
of this layer is almost invariant with z ;  for E* = 0.2, w = 0 near the sealed end. 

Figure 12 shows the effect of E* on the radial variation of v / a r  near the open and 
sealed ends of the tube; the conditions correspond to those for figure 11. The 
agreement between the computed and measured velocities for E* = 0.0266 and 
0.0027 is mainly good except, for z / l  = 0.129, near the tube axis. It can be seen that, 
for a fixed radial location, v/Qr decreases as E* decreases and increases as z / l  
increases. For E* = 0.2, the fluid is in solid-body rotation near the sealed end; for 
E* = 0.0002, there is no significant rotation in the central core even near the sealed end. 

The three regimes of Brouwers, discussed in $1 ,  have characteristics that can be 
observed in figures 11 and 12. The velocity distributions for E* = 0.0002 behave like 
those in regime (i) : the layers in which w < 0 and v > 0 correspond, qualitatively at  
least, to the Ei and Stewartson layers. The distributions for E* = 0.0266 are 
consistent with regime (ii), in which the tangential component of velocity is sheared 
from the axis to the wall. For E* = 0.2, the flow is restricted to a region near the inlet 
in a manner similar to that for regime (iii). 

It is worth pointing out that the overall agreement between the measured and 
computed values implies (as was presumed in 92) that the flow remains laminar for 
values of E* as low as 0.0027 and of E as low as 5 x As these values are quite 
typical of those found inside the anti-icing tubes of aero engines, it implies that the 
self-induced-flow problem is one of the few examples of laminar flow occurring inside 
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jet engines! The authors are unaware of a suitable criterion that can be used to 
estimate the transition from laminar to turbulent self-induced flow. 

5.3. Distribution of velocity in the boundary layer on the endwall 
It is shown below that the flow in the boundary layer on the endwall is similar to that 
for the free disk discussed in $2.1.1. It is appropriate, therefore, to use the non- 
dimensional axial coordinate 6 = z’ (Q/v ) i ,  where z‘ is the axial distance from the disk 
at  the sealed end. Here, z’ = 1 - 2 ;  in equation (2.5), the axial distance from the disk 
at  the open end of the tube was taken as z’ = -2. Although the flow in the tube, 
outside the boundary layer on the endwall, is governed by the modified Ekman 
number, E*, the flow in the boundary layer itself is controlled mainly by the 
conventional Ekman number, E .  

Figure 13 shows radial variations of w/Qa and v/Qr for G = 42.6 and E = 
6.25 x (E* = 0.0027) and for y = 2,5.5 and 86. The experimental data for 5 = 86 
correspond to those shown in figures 11 ( 6 )  and 12 ( b )  for z / l  = 0.984 and E* = 0.0027. 

Figure 13(a) shows that, as 5 is reduced, the distribution of w/Qa in the central 
core changes from the shape associated with flow in the tube to a flat distribution 
associated with flow in the boundary layer on the free disk, where w is invariant with 
r .  Similarly, figure 13(b) shows that the core rotation is insignificant for 5 < 5.5, 
which is close to the approximate edge of the boundary layer, as given by (2.7). It 
appears, therefore, that the central part of the endwall, for r / a  G 0.6, behaves like 
the free disk. 

This free-disk behaviour is shown more clearly in figure 14. It should be pointed 
out that, to ensure accurate computations, 32 finite-difference nodes were used in the 
axial region 0 < 5 < 10, and 65 nodes were used across the radius of the disk. The 
computed values of u /Qr ,  v/Qr and w/(Qv) i  are compared with the free-disk 
distributions of Rogers (see Owen & Rogers 1989) for r / a  = 0.25, 0.50 and 0.75. 

For small values of 5, the computed values of u/Qr  in figure 14(a) are similar to 
the free-disk distributions. As 5 increases, the differences become larger ; the negative 
values of u/Qr  for r / a  = 0.75 are associated with the spatially oscillating flow that 
occurs near a rotating disk in a rotating fluid (see Owen & Rogers). 

For r / a  GO.50, the computed values of v/Qr in figure 14(b) are virtually 
indistinguishable from the free-disk distributions. For r / a  = 0.75 and for the larger 
values of 5, there is evidence of the core rotation that causes the oscillatory flow 
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referred to above. In figure 1 4 ( c ) ,  for r / a  < 0.5 and for the smaller values of g, the 
computed values of w/(Slv)i are similar to the free-disk distributions ; for the larger 
values of 5, the computed axial components of velocity approach those associated 
with the flow in the core of the tube. The distribution of w/(G?v)i for r / a  = 0.75 
demonstrates the recirculation that occurs near the corner, a t  r / a  = 1 and z / l  = 1, as 
the fluid leaves the boundary layer on the disk to return in the annular layer on the 
cylindrical wall of the tube. 

For a constant value of E ,  the radial extent over which free-disk-type flow occurs 
will increase if G is reduced. However, as pointed out in $4.2, only a fraction of the 
fluid entering the tube reaches the sealed end : most of the ‘pumping effect ’ created 
by the rotating tube is caused by entrainment into the boundary layer on the 
cylindrical wall rather than into the boundary layer on the end disk. 

6. Conclusions 
When a tube, open at one end and sealed at the other, rotates about its axis, fluid 

flows from the open end along the axis towards the sealed end and returns in an 
annular boundary layer on the cylindrical wall. This self-induced flow, which can 
occur under isothermal condition, is believed to be responsible for the so-called ‘hot- 
poker effect’ used to provide anti-icing protection for the nose bullets of some jet 
engines. 

Experimental measurements have been obtained using flow visualization and 
LDA in a transparent rotating-tube, and numerical solutions of the Navier-Stokes 
equations have been computed using a finite-difference multigrid technique. Despite 
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the experimental difficulties, and despite the fact that the conditions at the open end 
of the experimental rig were different from those assumed for the numerical 
solutions, the agreement between the measured and computed velocity distributions 
was mainly good. 

In general, the flow in the tube is governed by the length-to-radius ratio, G, and 
the Ekman number, E.  However, for sufficiently large values of G (typically, G 2 20) 
the flow outside the boundary layer on the endwall can be characterized by the single 
non-dimensional group, E*,  a modified Ekman number where E* = GE. 

Most, or sometimes all, of the fluid entering the open end of the tube is entrained 
into the annular (Stewartson-type) boundary layer before it reaches the sealed end, 
and the axial component of velocity on the axis of the tube decays with distance from 
the open end. For small values of E* (E* < 0.2), some of the flow reaches the sealed 
end : this is called the short-tube case, which can be used for anti-icing nose bullets. 
For larger values of E* (E* 2 0.2), the axial component of velocity decays to zero 
before the sealed end is reached: this is called the long-tube case. 

For the short-tube case, the boundary layer on the endwall of the tube is similar 
to that associated with the free disk, and the velocity distributions computed for the 
central region of the endwall are in good agreement with similarity solutions of the 
von-Karman free-disk equations. Although this free-disk flow is controlled by E ,  
rather than by E*, the region of the disk over which this flow occurs increases with 
decreasing G and, hence, with decreasing E*. 

For the numerical solutions, the flow was assumed to be laminar ; the agreement 
between the measured and computed velocity distributions implies that this is a 
valid assumption for values of E and E* as small as 5 x 
respectively. No evidence was seen of turbulent self-induced flow, and no criterion is 
known for the transition from laminar to turbulent flow. 

The effects of inlet conditions and tube geometry on self-induced flow are reported 
by Gilham, Ivey & Owen (1991), and a study of the heat-transfer problem will be 
reported elsewhere. 

and 2.7 x 
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